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WORKSHOP
ON

EXPLOSIVE AND PROPELLANT COMBUSTION MECHANISMS

This Workshop was sponsored by the Société Nationale des Poudres
et Explosifs (SNPE), with the Office National d’Etudes et de
Recherches Aérospatiale (ONERA), and the Office of Naval Research
European Office (ONR Europe). The Workshop was held at the SNPE
Centre de Recherches du Bouchet (CRB), Le Bouchet - B.P. no. 2,
91710 Vert-le-Petit, France, on June 3-4, 1991,

The early initiative for arranging this activity came from Dr.
R.S. Miller, Chief Scientist, Mechanics Division, ONR, and Dr.
Bernard Finck, Head, New Molecules Section, Defense Espace, SNPE.
Dr. A.M. Diness, Director, Engineering Sciences, ONR, supported
the effort. Assistance was provided by Dr. Jacques Boileau, SNPE
(retired), and now an advisor to the Direction des Recherches,
Etudes et Techniques, Division of D&l&gation Générale pour
l1’Armement.

Informal introductory meetings were arranged for Dr. R.W.
Armstrong, Liaison Scientist, ONR Europe, with Dr. Bernard
Wiedemann, Directeur, SNPE, and Dr. Alain Davenas, Directeur,
Technologie et Recherche, SNPE, to gain approval for the proposed
workshop. Dr. René Couturier is Manager of Research at SNPE/CRB.
Dr. Gérard Doriath is Manager of the Propulsion Research Program.
From this program and Bernard Finck'’s activity, respectively,
Drs. Bernadette Gossant, Program Manager, Internal Ballistics,
SNPE, and Marc Piteau, Energetic Material Synthesis, SNPE,
provided coordination for developing the workshop with R.W.
Armstrong, and with ONERA workshop participants, particularly, in
the Energetics Department of ONERA headed by Dr. Guy Lengellé.
Armstrong, in consultation with R.S. Miller, J. Boileau, and SNPE
colleagues, arranged for the participation of U.S. scientists,
especially including representatives from the Naval Research
Laboratory.

In the subsequent pages of this report, corresponding largely to
a description of research activities "in progress", a record is
established of selected visual aids from the presentations that
were given. A number of the U.S. participants were persuaded to
add a written precis to their presentations. To all
participants, a note of appreciation is given here.

R.W. Armstrong B. Finck R.S. Miller
ONR Europe SNPE/CRB ONR HQS
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WORKSHOP ON EXPLOSIVE AND PROPELLANT COMBUSTION MECHANISMS
PARTICIPATION

Twenty participants took part in this workshop including a U.S.
team of seven persons selected by Dr. R.S. Miller, Chief
Scientist, Mechanics Division, Office of Naval Research. The
French participants were from the host Soci&t& Nationale des
Poudres et Explosifs (SNPE), Centre de Recherches du Bouchet
(CRB), and from the Office National d’Etudes et de Recherches
Aérospatiale (ONERA), Centre de Palaiseau. Dr. Jacques Boileau
participated on behalf of Direction des Recherches, Etudes et
Techniques, Delegation G&nérale pour l’Armement (DGA), and Dang
Quang Vu was there on behalf of the DGA Direction des Missiles et
de l1’Espace, Service Technique des Poudres et Explosifs.

SUMMARY

First, selected visual aids are shown in this report as taken
from the presentation by B. Gossant, giving a survey of internal
ballistic programs at SNPE relating to solid propellant
combustion mechanisms. This is followed by a visual aid package
presented by G. Lengellé@ and ONERA colleagues, mostly on burning
rate determinations. An overview is given by R.S. Miller (and
A.W. Miziolek) of considerations relating to the combustion of
high energy density materials, also with selected visual aids
that were shown. The following presentations consist of extended
abstracts and selected visual aids illustrating elements of U.S.
programs now set to study combustion mechanisms in a new
generation of energetic materials.

A main purpose of the workshop was to identify strengths of the
French and U.S. programs as a forerunner of establishing specific
collaborative U.S./France research activities on new energetic
materials, known in the U.S. research community to involve new
combustion considerations. The burning rate measurement
capabilities at ONERA were an agreed strength as well as the
availability of a new generation of energetic materials in the
U.S., as described by R.S. Miller, with energies characteristic
of metallic systems but without telltale signatures. The
combustion properties approach theoretically limiting values and
the comprehensive analytical description of these properties
requires use of the fastest computers. New standardized
combustion tests are being designed in the U.S. to evaluate the
performances of these materials.

Agreement on a joint study of trinitroazetidine (TNAD), glycidyl
azide polymer (GAP), and hexanitrohexaazaisowurtzitane (HNIW)
materials resulted from the group discussions. A consensus was
reached that it would be profitable for French investigators to
increase their research efforts on the new ingredients that are
available for propellant formulations. An important
recommendation was to involve in this subject area researchers at
French universities, particularly relating to SNPE activities.
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WORKSHOP ON EXPLOSIVE AND PROPELLANT COMBUSTION MECHANISMS

Sponsored by the Société Nationale des Poudres et Explosifs,
with the Office National d’Etudes et de Recherches Aé&rospatiale,
and
the Office of Naval Research European Office

held at the

SNPE Centre de Recherches du Bouchet (CRB)
Le Bouchet - B.P. no. 2, 91710 Vert-le-Petit, France

June 3-4, 1991

SNPE-ONERA PRESENTATIONS

B. Finck, SNPE/CRB
Research done at SNPE,
particularly relating to new molecules

M. Piteau, SNPE/CRB
Formulation and characterization of new energetic materials

J.P. Bac, SNPE/CRB
Computational thermochemistry of energetic materials

B. Gossant, SNPE/CRB
Comprehensive combustion mechanisms related to motor firing

G. Lengell&, ONERA/Centre de Palaiseau
Decomposition and combustion
of existing and new energetic materials

J.R. Duterque, ONERA/CP
Methods and measurements for characterizing the combustion
of energetic ingredients

J.F. Trubert, ONERA/CP
Gas sampling and mass spectrometry analysis
at the decomposgition surface and in the flame
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WORKSHOP ON EXPLOSIVE AND PROPELLANT COMBUSTION (CONT’D)

Sponsored by SNPE with ONERA and the ONR at the
SNPE Centre de Recherches du Bouchet
Le Bouchet - B.P. no.2, 91710 Vert-le-Petit, France

June 3-4, 1991

U.S. PRESENTATIONS

R.S. Miller, Office of Naval Research, Arlington, VA, (and A.W.
Miziolek, Ballistic Research Lab., Aberdeen Proving Ground, MD)
High Enerqgy Density Materials Combustion

T.B. Brill, University of Delaware, Newark, DE
1. Chemical phenomena at burning surfaces
2. Decomposition of energetic materials at high temperature

T. (and D. Hanson-) Parr, Naval Weapons Center, China Lake, CA
Solid propellant flame structure,
monitored with advanced laser diagnostics

E.W. Price, Georgia Institute of Technology, Atlanta, GA
(presented by T. Parr)
Kinetically limited leading edge of diffusion flames (KLLEFs)

C.F. Melius*, Sandia National Laboratories, Livermore, CA.
*Visiting Professor at Universite Pierre et Marie Curie.
Theoretical determination of thermochemistry
and reaction mechanisms

R. Gilardi, Naval Research Laboratory, Washington, D.C.
Structure analyses of energetic and strained organic compounds

R.W. Armstrong*, Office of Naval Research European Office,
London, U.K.
*On leave from the University of Maryland, College Park, MD,
following a sabbatical research stay at the Cavendish
Laboratory, University of Cambridge, U.K.
Thermomechanical influences on the combustion
of RDX crystals



B. Gossant

Propellant and Combustion Mechanisms
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J. Duterque, G. Lengellé, and J.F. Trubert

Decomposition and Combustion Measurements
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ONZERA

Energetics Department
Centre de Palaiseau

DEA 5660 USA-FRANCE

Working Group n°® 4 - 3/4 june 1991

Decomposition and combustion of existing and
new energetic materials.

- Existing ingredients and corresponding
propellants

- Methods for characterizing the combustion of
energetic ingredients

- Gas sampling and mass spectrometry analysis
at the decomposition surface and in the flame

J. DUTERQUE, G. LENGELLE, J.F. TRUBERT

30
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Existing ingredients and corresponding
propellants

- Double-base propellants and active binders
Numerous results, Kubota/Japan,
Zenin-Korobeinichev/URSS,

N.S. Cohen - M. Beckstead/USA, ONERA/France.

Should serve as referencg fqr methods of
investigation and for modelization efforts.

- HMX - RDX
Approach similar to that of DB propellants.

- Composite propellants _ .
AP - PB binder/HMX - active binder

31
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Pressure
atm.

10 50 100

Vp, mm/s 1 ;9 6 7 10.6

T,, K 610 662 685 L

Preheated
zone, jm 140/ 5S0/55 45/35
(measured/ 194
computed)

Residence
time in

preheated 100 8 3
zone, ms

Superficial _
degradation 11 3 2
zone um

Residence
time in

superficial 6 0 4o B2
zone, ms

Flame
thickness, 200 75 110
Hm (secon-
(measured) dary
flame)

—_

Measured results from Zenin

Characteristic%3of the combustion zones.



T
: lp=925°C
500 (corrected for radiation
4 001 losses)
OH  r..3200¢
330
200
P=6atm.
Vy=2mm/s
100 T Thermocouple wire 12um
] Surface
i g
{0
30- 100um
201
’0 T T -
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TEMPERATURE PROFILE IN THE CONDENSED PHASE

34



‘ Burning rate mm's 010 atm 1s indicated BR/25191

30 ¢

G +-

10

0.4 -

0.3 - _ B
1.8 1.4 1.5 1.6 1.7 1.8 1.9 2 107

Tg K 714 667 625 588 555 526 500

Corresponas to A, o ar Ec =40 10° caimore

Qs = 100calg, Ty =20°C . 9p =08 10 e’ ¢
-« A Microthermocoune ONERA (1100 calg)
& Microthermocoup.e SUH
® Reference, microinermaocouple  KUBOTA
® + additives, microinermocouple KUBOTA
® Microthermocoup'e ZENIN
O  "Light pipe method™ SELEZNEV Propetiant "N” (reference)
"Thermal noise methoa” il
B Microthermocoupie DENISYUK Tg = 120°C

PYROLYSIS LAW FOR D?%JBLE - BASE PROPELLANTS
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Figures for a burning rate of 10 mm / s. Positive heats are exothermic.
COMPARATIVE PICTURE OF AP-INERT BINDER AND HMX-ACTIVE BINDER COMBUSTION
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HIGH ENERGY DENSITY MATERIALS COMBUSTION

Richard. S. Miiler Andrzej W. Miziolek

Office of Naval Research  Ballistic Research Laboratory

Arlington, VA 22217 Aberdeen Proving Ground, MD 21005
L._-_Introduction:

Dramatic advances in nitramine oxidlzer chemistry, energetic polymer chemistry,
combustion diagnostics, computational combustion simulation, processing simulation, and
detonation hazards simulation science and technology wiii provide the framework for major
advances in the energy denslty and the control of energy release rates of rockets and explosives.
High energy density materials makes possible the development of new generations of (a) high
energy, low signature, minimum sensitivity missile propellants, with tailorable high burning
rates, and (b) new generatlons of high energy, minimum sensitivity explosives, for both
enhanced armor penetration and underwater structural damage.

The current solid rocket propulsion and armaments technology Is based on materials that
have been employed world-wide during most of the 20th century. Monocyclic nitramines (RDX
and HMX), nitrate esters of celiulose and glycois, non-energetic crosslinkable polymers,
aluminum powder, and inorganic oxldizers (e.g. ammonium perchlorate) are materials
employed widely In current high parformance compositions. RDX and HMX, for example, were
synthesized in the time period from 1890 to 1940, and came Into first mllitary use in World
War Il. Nitrate esters, such as nitroglycerin and nitrocellulose, are even older materials.
Limitations of RDX and HMX based propellants and explosives are densities of 1.9 gram per
cubic centimeter or less, heats of formation substantially less than those of advanced
nitramines, and a "burning-rate box" - a burning rate resistant to tailoring.  Significant
increases in energy density and in the control of the energy release rates in solid rocket
propellants with reduced slgnatures, In explosives with high metal-accelerating detonation
energy, and in underwater explosives with high shock and bubble energy, are potential
consequences of ongoing major advances in nitramine oxidizer and energetic polymer chemical
sciences. A specific example Is a family of high energy density, low signature rocket propellants
which will employ advanced nitramine oxidizers in combination with energetic poly(oxirane)
and poly(oxetane) crosslinkable polymers plasticized with conventional high energy nitrate
esters, or other advanced materials. The first advanced nitramine oxidizer was synthesized in
February of 1987 at the Naval Weapons Center; US Air Force, Navy, and industrial energetic
poly(oxirane) and poly(oxetane) polymer research and development has also been successful.

The computational combustlon, processing, and hazards simulations of composites
composed of advanced nitramine oxldizers and energetic polymers will reduce the cost and risk
of successful US missile and gun propellant development because combustion and processing
instabilities as weli as detonation hazards will be predictable and hence avoided. Increases in
underwater expiosive performance wili accrue as nitramine oxidizer science is extended to
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discover crystalline oxidizers with mixed halogenated functional groups and nitramine
combustion simulation capability is extended to include halogen metal/boron combustion and
their corresponding high pressure kinetics and transport processes.

L - High E Dl MATRAA oo ie: Comlkistion 88

The goal is to establish the computational combustion science base for understanding
and controlling the energy release processes at the microstructural level of high energy density
non-metallized propellants and new metallized all-gas-product underwater explosive concepts.

An understanding of the coupled condensed and gas phase chemical processes occurring
during mono-propeilant steady state combustion, using high energy nitramine oxidizers and
energetic polymers as separate substances, will first be established. Complementary
experimental quantitative methods, at low pressure, that spatially resolve gas phase species and
gas and condensed phase temperature profiles will be used. Using this understanding of the
mono-propellant condensed phase and gas phase combustion processes, coupled condensed phase
and gas phase models, contalning detailed kinetic theory transport and finite rate chemistry,
will be developed. Using these developed mono-propellant combustion models, two dimensional
computational combustion and transport simulations of the coupled condensed and gas phase
processes during crystalline oxidizer and energetic polymer model propeilant (2-D) diffusion
flame combustion will be made. At low pressure, using complementary experimental techniques
to those used in the monopropellant combustion investigations, a quantitative understanding of
microscopic two dimensional diffusion flames at the propellant microstructural level will be
established. The two dimensional simulations with coupled gas and condensed phase chemistry
models will be validated using these experimental, spatially resolved investigations of gas phase
species and gas and condensed phase temperature profiles of two dimensional model propellants.

This two dimensional simulation wlll provide the first microstructurally based solid
propellant combustion modeling tool to the US solid propulsion industry. This will be a point of
departure towards future three dimensional solid propellant combustion modeling requiring
massively parallel computer computational capabilities, and presently conceptual,
multidimenslonal kinetics and transport sensitivity and lumping mathematics.

AL Gas Pl Combustion P M { & Simulati

Quantitative measurement of gas phase species and temperature distributions above the
deflagrating solids using complementary advanced optical spectroscopic diagnostics, mass
spectrometric techniques along with temperature distributions in the condensed phase will be
established. Experimental measurements of gas phase combustion processes in the Immediate
vicinity of the regressing propellant surface are very difficult and present a substantial
challenge to the combustion diagnostics community. However, powerful techniques have been
developed over the last two decades that allow for the measurement of important flame
parameters such as temperature and species concentration profiles. None of these techniques,
or any of the emerging new ones, have yet been brought to bear on any of the nitramine flames
with the goal of thoroughly testing the existing 1-D flame models to verify their validity. Such
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tests, which are typically done in hydrocarbon combustion research, require accurate
temperature measurements as well as relative and absolute concentration profiles to be made
for major and minor chemical specles throughout the flame zone. This kind of quantitative data
requires extensive careful laboratory work and frequent cross-checking between different
laboratories using different techniques to measure the same flame parameter.

The techniques currently used for this type of work can be divided into two groups;
spectroscopic and mass spectrometric. The spectroscopic diagnostic tools can yield either point
measurements (such as laser-induced fluorescence (LIF)) or line-of-sight measurements
(such as absorption). Many of the spectroscopic techniques are laser-based and are considered
to be non-intrusive. Among the important ones that need to be applied to advanced nitramine
oxidizer and energetic polymer flames are; (a) Coherent Antl-Stokes Raman Scattering (CARS),
which is used primarily for flame temperature measurements and major species detection, (1)
(b) LIF, which Is used for reactive (radical) species measurements like OH, O, H, CN, NCO,
etc., (2-3) and (c) Resonance Enhanced Multl-Photon lonization (REMPI), which Is used for
detecting non-fluorescing species ilke H2CN, and methyl radicals (4-5). For a more complete
summary of propellant dlagnostics and modeliing see reference (6,8). A new technique called
Degenerate Four-Wave Mixing (DFWM) appears to hold great promise to complement LIF
experiments in that it appears to work well with minor specles (unlike CARS), but seems to
avoid the quenching and quantification problems that accompany LIF measurements.(7) The
applicability of this technique will be explored for advanced nitramine, energetic polymer and
model propellant diffusion flames.

Another spectroscopic technique that needs to be applied to these flames is infrared
absorption spectroscopy. Fourier Transform Infrared Spectroscopy (FTIR) has been applied
very successfully to hydrocarbon flame research and appears to be very promising for
nitramine flames since a number of Important species like HONO, HNO, HNCO and HCNO have
known infrared absorption bands. Tunable infrared lasers should also be useful due to their
increased time and spatial resolution. (8)

Mass spectrometlry is yet another powerful tool for chemical detection that has been
applied extensively to hydrocarbon flame research but not yet applied to nitramine flames.
Although probing of a sample volume of the flame zone Is not strictly non-intrusive, in many
cases the nature of the intrusion (flow field and thermal perturbation) can be minimized as
well as accounted for in the data analysis. There are primarily two types of mass spectrometric
sampling: molecular beam as well as quartz microprobe. The molecular beam technique allows
for the detection of reactive specles which are "frozen out” in the beam formation/expansion
process, but due to the size and shape of the sampling cone, is more susceptible to perturbing
the flame. (9) The quartz microprobe sampler, on the other hand, minimizes the flame
perturbation, but is not sensitive to highly reactive, minor species. An appropriate model
validation program will require a comprehensive experimental approach utilizing all of the
above techniques, and by the nature of the requirement, will require a very high degree of
coordination between the laboratories engaged In this research.

These species and temperature profiles will test and establish the validity of gas phase
nitrogen combustion chemistry and transport networks simulations based on elementary
reaction kinetics belng established under coordinated DoD and DoE Sandia Combustion Research
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Facility Laboratory programs. The Sandia Combustion Research Facility combustion simulation
is presently capabie of handling 1-dimenslonal mono-cyclic nltramine gas phase flame
chemistry and transport on a detaiied chemical ievel using the CHEMKIN nitrogen, carbon,
hydrogen, oxygen chemical kinetics package. (10)

The Sandia combustion simuiation has predicted these profiles as well as the pressure
and temperature dependencies of RDX combustion. RDX flames are presumably simulated in this
analysis because RDX reaction chemistry is largely inltiated in the gas phase for which the 1-D
premixed flame code is most applicable. The gas phase 1-D flame simulation does not inciude the
currently unknown physics and chemistry of condensed phase energy reiease processes which
are now known to be dominant in advanced nitramine combustion. However, before these models
can undergo further development, they have to be verified experimentally to establish their
accuracy. Currently, even the verification of the existing RDX flame model has been Inadequate
with the only experimental data available for comparison coming from iimited Russian
literature.

In addition, the heterogeneous nature of the solid/gas interface has been ignored in all of
the propeliant combustion models that have been developed to date. (11) The challenge,
therefore, Is not only to study this interfaclal region experimentally and to develop appropriate
modeis for it, but also to determine the Importance of heterogeneous processes in the overall
combustion of nitramine oxidizers, some of which are aiready known 10 undergo substantial
condensed phase chemistry. Oxidizers with substantial condensed phase energy release have
never before been known. The coupling of combined condensed phase and gas phase energy
release processes in a nitrogen based oxidizer is heretofore an unknown phenomena. The
heterogeneous chemistry portion of this program represents a pioneering effort. It will require
the development of better diagnostic tools that can probe the gas composition and the
temperature gradlent in the immediate vicinity of the surface. Also, appropriate interface
computational models will need 1o be developed to simulate this process accurately. Work that
has been Initiated In coal combustion, In which heterogeneous processes are very important,
will be extended to include condensed phase energy reiease and nitrogen chemistry networks.

A2 - Condensed Phase Chemical Processes

Experimental investigation of micron thick nitramine oxidizer and polymer films heated
by fast microsecond laser substrate heating coupled with: (a) time of flight mass spectrometry,
for identifying gas phase specles, (b) translent time resolved infrared spectroscopy, for
condensed phase specles identification, (c) time resolved ellipsometry, for film thickness
observations, and (d) time resolved infrared thermometry, for subsirate temperature
measurement, wiil permit the condensed phase chemical processes to be investigated and
understood.(12) These coupled experimental measurements, made at heating rates from
100,000 to 1,000,000 degrees per second and at attained temperatures that are reflective of
solid propellant combustion conditions, wlil provide the first observations of subsurface
condensed and gas phase chemical processes. The interpretation of these observations when
coupled with the results of molecular level behavior research that Includes: (a) high
temperature solution decomposition study resuits, (b) very low pressure pyrolysis results,
(c) detailed subsurface product combustion studies, (d) low temperature reactive defect
formation studies, and (e) unimolecular molecular beam decomposition results, will establish
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the condensed phase combustion chemlstry modei.

Advanced underwater expiosive aii-gas-product concepts, which may empioy mixed
nitramine difluoroamino expioslves, dinitramino saits, novel piasticizers, energetic poiymers
and aluminum or boron particles, have evoived that will maximize both shock and bubbie
underwater structurai damage. The control of the post-detonation bubbie energy reiease rates of
these new underwater explosive concepts, to maximize bubble structural damage effectiveness,
will require an understanding and the abiiity to control metai, aluminum and boron combustion.
The ability to understand and controi distributed boron or aiuminum particie combustion In
high pressure fiuorine and chiorine rich detonation product gases will require validated
simuiations. As the very first step In establishing this multi-dimensional boron/aluminum
combustion simulation, a kinetic model for the boron and aluminum in combination with carbon,
hydrogen, fluorine, chlorine, and oxygen species must be estabiished. The future deveiopment
of a kinetic model of homogeneous combustion of boron and aluminum combustion in haiogen F
or Cl containing O/H/C detonation product gases will establish a point of departure for the
simulation of the heterogeneous combustion of boron and aluminum in underwater detonation
product gases.

IIl. CONCLUSIONS
A._lmpact on Future YWeapons Systems

High energy density materiais coupied with combustion, processing and detonation
hazards simulation sclence and technology will enabie the US to utilize non-metalized, iow
observabie, high performance missiie propeilants with tailorable burning rates, high
performance shaped charges for armor penetration, advanced low vulnerability gun
propellants, and new generations of underwater explosives to maximize underwater structural
damage. Additionai advantages of the advanced propellant and expiosive technoiogy include: (a)
improved mechanicai properties and reduced vuinerabiiity because of improved polymers and
higher polymer content, (b) improved processabiiity because of lower soiids loading, (c)
possibie elimination of plasticizer migration because plasticization may not be necessary, (d)
higher thermai stability and iower vulnerabliity, (e) higher combustion efficiency and no two-
phase flow losses with the use of advanced nltramine oxidizers and energetic binders in non-
metallized propellant formulations, (f) iess impact on the environment with no or iess
hydrogen chioride production because of elimination or decreased use of ammonium perchiorate,
and (g) minimum waste disposai with thermoplastic elastomer based propellant reprocessing.

B. lmpact on the Industrial Base:

The major impact on the US industrial base will be to produce propellants that
simultaneously satisfy the requirements for reduced infrared signatures, controiled detonation
hazards and tailorable, stable, controliable burning rates for tactical as well as for potential
new generations of strategic misslie propuision systems. A predictive propellant and explosive
simulation capability for bailistics, processing and hazards design will be utilized as it is
developed. Current empirical design techniques based on decades of propellant deveiopment
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using conventional ingredients (RDX, HMX, non energetic polymers, aluminum powder and
ammonium perchlorate) in batch processing equipment will be used initially but with little
hope of direct applicability due to very different combustion behavior of the high energy density
materials.
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EXPERIMENTAL SIMULATION OF THE BURNING SURFACE 07/25/91
DURING COMBUSTION/EXPLOSION

Thomas B. Brill

Department of Chemistry
University of Delaware
Newark, DE 19716
USA

SUMMARY/OVERVIEW:

A chemical and physical description of the surface reaction zone during
propellant burning is essential to any advanced model of combustion. Because
chemical details have not been obtainable during actual combustion, two
simulation experiments have been developed to determine the kinetics and
mechanisms. The burn rate is predicted by the measured kinetics. The
observed gas products, therefore, very probably initiate the first stage of
the flame zone.

TECHNICAL DISCUSSION

New high energy rocket propellants formulated without metal fuels present
an enormous challenge to the rocket propulsion community. Instability, safe
ignitability, and tailorability are all potential problems that have to be
surmounted. Modeling will play a major role in guiding development because of
the expense of large scale testing.

The ultimate goal of modeling combustion and combustion stability of
rocket propellants requires, among other inputs, a chemical and physical
description of the reacting surface at the microscale level. Such detail has
not been forthcoming from direct measurements during combustion. This is
because the surface is transient, heterogeneous, non-equilibrium and is
obscured by the flame. Therefore, it is necessary to design experiments that
simulate the condensed phase and surface during combustion, but release the
gases into a cool unreactive atmosphere where they are quenched and detected
immediately.

The burning surface can be imagined to be a film of material 20-100uM
thick in which a phase change occurs driven by chemical reactions and heat
transfer. In effect, it is a "thin-film" reaction zone that regresses through
the condensed phase on one side leaving gas products behind on the other side.
Therefore, an instantaneous simulation of this reaction zone would be a thin
film of sample experiencing a heating rate in the 100-2000°C/sec range at a
pressure of atmospheric or higher. The choice of the heating rate of 100-
2000°C/sec is based on recent work of Sakamoto and Kubota with thermocouples
imbedded in HMX propellants. Their measurements indicate that dT/dt in the
condensed phase (foam) reaction zone is 1000£500°C/sec.

Two approaches to the reaction zone simulation have been developed:
Fast-Heat-and-Hold/FTIR Spectroscopy (also called T-jump/FTIR) and
Simultaneous Mass and Temperature Change/FTIR Spectroscopy (SMATCH/FTIR).
Measurement of both high rate kinetics and the gas products released is
important because it needs to be demonstrated that the kinetics predict the
burn rate in order to have confidence that the gas products observed are the
ones that feed the dark zone of the combustion region.
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The Fast-Heat-and-Hold/FTIR method is designed to permit heating of a
sample at 2000°C/sec to a preselected final temperature. In this way, most of
the interfering chemical processes that are operative in decomposition studies ‘
at slow heating rates and that result from "cooking" are minimized. Figure 1l
shows a diagram of the method. The thermal response trace of the sample {is
obtained from the control voltage of the circuit that maintains constant
resistance of the Pt ribbon filament. The gas products are evolved into a
cool argon atmosphere where they quench and are identified and quantified by
absorbance of the IR beam of a rapid-scan FTIR spectrometer. Figure 2 shows
the composite of these data for HMX heated at 2000°C/sec to 300°C. The
ignition exotherm is the sharp negative spike in the control voltage.

The fact that gas products are detected in advance of the exotherm is
strong evidence that autocatalysis is operative in HMX. The fact that NO, and
N,0 appear in advance of the fuels (CH,0 and HCN) indicates that these fuel
and oxidizer-producing reactions are not coupled. That is, NO, and HCN are
not produced in the same elementary reaction and N,0 and CH,0 are not produced
in the same elementary reaction. Instead, N,0 and NO, are released and CH,0
and HCN are then produced in later stage degradation of the residue. The fact
that the gas product concentrations are not changing through the exotherm
implies that the mechanism of decomposition before the exotherm and during the
exotherm i{s essentially the same throughout. More of the HMX is simply
decomposing.

The most useful new data from this experiment so far are gas product
ratios as a function of temperature. The N;0/NO, ratio shown in Figure 3
reflects the ratio of rate constants for the two global decomposition paths of
HMX: the N0 + CH,0 branch and the NO; + HCN branch. At lower temperature
the N;O0 + CH,0 branch dominates, while at higher temperature the NO, + HCN ‘
branch dominates. Temperatures in the range of 350°C are believed to exist on
the surface of burning HMX propellants. Thus, Figure 3 gives the ratio of the
rate constants for the two "feeder" reactions that should be used as inputs in
models of the gas phase during the ignition of HMX.

The SMATCH/FTIR technique enables the dynamic weight change of the sample
to be recorded as a function of time and temperature as the sample is rapidly
heated. From this, a kinetics simulation of the burning surface is obtained.
Simultaneously, the near surface gas products are recorded by rapid-scan FTIR
spectroscopy.

Recently, it has been found that the Arrhenius constants from SMATCH/FTIR
studies of thin films accurately predict the burn rate (t) measured in the
same pressure and temperature range. Figure 4 shows the simultaneously
acquired weight-loss, temperature increase and near surface gas product data
for 13XN nitrocellulose. A non-isothermal kinetics model was applied. The
Arrhenius constants obtained and the known sample thickness predict ¢ = 0.3
mn/sec. The value is in excellent agreement with the experiment ¢ of 0.4
mm/sec for a double base propellant (80X nitrocellulose) determined under the
same pressure conditions. The SMATCH/FTIR data for glycidylazide polymer
(GAP) predict t = 1.35 mm/sec compared to the experimental value of 1.7 mm/sec
under the same pressure conditions. The similarity of the predicted and
measured t gives confidence that the gas products and concentrations measured
by SMATCH/FTIR are the reactants for the flame were a flame to be present.

The gas products from SMATCH/FTIR are essentially the same as those measured

by the Fast-Heat-and-Hold/FTIR method and all of our previous fast

thermolysis/FTIR studies. As a result, the connection between the chemical

composition of a material and its ultimate flame characteristics is beginning ‘
to be made.
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quantified gas products from 200ug of HMX. The heating rate was
2000°C/sec to a constant temperature of 300°C.
i{s the exotherm of HMX. See text for more details.

The negative spike
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Figure 3. The N,0-CH,0/NO,-HCN branching ratio of HMX as a function of
temperature. The rates of these two reactions are approximately
equal at the burning surface temperature of HMX (340-360°C).
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Figure 4. SMATCH/FTIR data for a 30uM thick film of 13XIN nitrocellulose
showing the dynamic weight change, temperature change and near
surface gas products. The mass change and temperature profile
enables a non-isothermal kinetics model to be applied. The gas

products are the species that leave the surface under this
simulated combustion situation.
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TECHNIQUES DEVELOPED TO APPROXIMATE

IGNITION AND COMBUSTION OF SOLIDS
MORE CLOSELY

SMATCH/FTIR Spectroscopy

Simultaneous measurement of the
mass change, temperature change
and near—surface gas species of
thin films heated at dT/dt<320K/sec

Fast—Heat—and—Hold FTIR Spectroscopy

dT/dt=2000k/sec to an isothermal
temperature.
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Problem: Combustion and explosions Incorporate

high temperature reactions of the condensed phase.

What Is the chemlistry of an energetic material at a
temperature well above its normal "slow’

decomposition temperature?

A Solution: T-Jump/FTIR Spectroscopy

Heat 200ug of sample at 2000 C/sec to a set

temperature and hold at that temperature while
recording the temperature and measuring the

gas product concentrations next to the surface.

89
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® Cell Design

® Heat a thin fiim of material at a controlied high rate -
and stop at a desired temperature (CDS Pyroprobé) |

® Record the thermal response of the sample

e Evolve the gases Into a cool inert atmosphere

to quench them in near-surface zone.

® |dentify and quantify products in near-real time
(Nicolet 20SX or 60SX)

—26
\ .__/ITB
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SOLID PROPELLANT FLAME STRUCTURE MONITORED WITH ADVANCED LASER
DIAGNOSTICS

Tim Parr and Donna Hanson-Parr
Research Department
Naval Weapons Center
China Lake, CA 93555-6001

OBJECTIVE This presentation summarizes work done at NWC utilizing advanced laser diagnostics, as
well as other techniques, to measure solid propellant flame structure and chemistry. The ultimate goal of
such studies is a better understanding of the fundamentals of solid propellant combustion on a detailed
chemical kinetic level. Such an understanding would allow for the development of a computer code for
the a-priori prediction of propellant ballistic properties such as bum rate, pressure exponent, temperature
sensitivity, ballistic catalysts, combustion instability, ignitability, and hazard properties such as DDT. Such
a code wouid afford general improvements in formulation capabilities as well as shortened development
times and a move away from expensive trial and error formulation testing. The development of such a
code requires direction and validation by experimental work aimed, in part, at directly measuring
propellant flame chemistry and structure.

The direct objective of our work is to measure temperature and species profiles in deflagrating samples of
neat energetic materials, composite propellants, and controlled geometry composite sandwich
propellants. We will discuss the experimental techniques used, including transient UV/Vis absorption and
Planar Laser Induced Fluorescence (PLF). PUF results for ignition and deflagration at 1 atm of neat and
composite samples will be presented and the effect of elevated pressure on propellant flame structure
shown. Deflagration temperature profiles, measured using PLIF and thermocouples will be presented.
Calibration of PLIF measured relative species profiles using transient absorption will be discussed. Finally
composite sandwich propellant diffusion flame structure will be presented.

TECHNIQUE The samples we work with are pressed peliets of neat nitra:Bines or sliced pieces of
composite propellants. A COp laser is used to supply up to 150 cal/cm®s igniting flux, affording
temperature gradients to above 100K deg/s. We study flames at ambient pressure and up to 4 atms.

The PLIF diagnostic technique allows measurement of 2D profiles of flame species and temperature in a
single laser shot. The Nd-YAG/dye/non linear crystal laser beam is formed into a sheet, passed over the
samples surface and through the center of the flame, and tuned in resonance with an absorption transition
of a species of interest (we have studied CN, NH, OH, CH, C5, NO, NO5, NCO, H,CO). Fluorescence from
that species is measured at right angles to the laser sheet using a gated image intensified CCD camera.
The technique allows spatial resolution of better than 50 microns (10 microns possible) and temporal
resolution below 10 ns.

For transient absorption measurements on steady state deflagration the sample pellets deflagrating
surface is held at a constant height using spnng loading from below and a taught tungsten wire stretched
over the surface. The path of a Xe arc lamp is placed at the desired height above this surface and
absorption monitored using a spectrometer and an intensified OMA (Optical Multichannel Analyzer). The
spatial resolution is better than 250 microns using this configuration. Absorption measurements have
been made on OH, NO5, NO and CN using this apparatus.

PLIF RESULTS ON IGNITION PLIF measurements of the time evolution of ignition of neat HMX (at 1 atm)
show the following. At times less than 2 msec no gaseous species are evolved; calculations show that at
the heating flux used, 2 msec are required to heat the HMX surface up to the 'melting’ temperature. After
the surface meilts, a plume of NO5 begins to grow, reaching about 2.5 mm off the surface at 4 msec. At S
msec a spherical gaseous ignition kernel forms, as evidenced by the CN PLIF images, and this kernel
consumes a hole in the NO2 plume leaving an outward accelerating thin shell. The ignition kernel rapidly
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forms into a thin flame sheet the edges of which then attach to the sample surface. The NO5 plume is
reduced in intensity and limited in extent to the region below the thin flame sheet. PLIF measurements on
other species show that NH generally follows the CN time/space behavior with the exception of peaking
slightly closer to the surface. The OH radical forms only after the ignition kernel forms and peaks beyond
the flame sheet, staying at a high concentration higher into the flame because it is an equilibrium product.
The NO profile largely follows the NO, behavior but the concentration is so high that the laser beam is
totally absorbed and PUF profiles not accurate.

Addition of a binder to HMX, as in a composite propellant, causes longer ignition kernel delays and higher
flame standoff distances. The PLIF technique has shown efficacy even for relatively dirty highly aluminized
propellant flames.

ELEVATED PRESSURES When the backing pressure is raised the ignition kemel delays decrease and
the flame standoff distance drop. As pressure Is increased the flame sheet standoff distances drop
approximately inversely with pressure while the flame thickness decreases much more slowly. This
implies that at realistic rocket motor pressures the flame sheet will be very close to the surface, ca 25
microns, and will extend onto the surface, pointing out the Importance of radical attack on the condensed
phasa.

TEMPERATURE Kinetics are exponentially dependent on temperature so it is impaerative to accurately
measure temperature profiles to facilitate kinetic modeling of propellant flames. The rotational
temperature of a species can be obtained by ratioing rotationally specific population density
measurements, which can be obtained using PUF by pumping different resonant lines. Such
measurements done on OH radicals show that the flame kemel mentioned above correlates with the
secondary flame of HMX deflagration, ie total thermodynamic heat release. A Boltzmann plot for OH
rotational level distribution in HMX deflagration lead to a slope indicating a rotational temperature of 2772
K + 35K, which Is very close to the adiabatic flame temperature for HMX at 1 atm (2922K) showing that the
PLIF technique has reasonable accuracy even in a hostile environment. Combining these PUF results for
gaseous flame temperature profiles with our micro-thermocouple measurements of condensed phase and
near surface temperatures clearty shows the two stage nature of the HMX and RDX flames. Table | shows
the important results:

TABLE I.
Ingredient Mett Thick. Ts Primary Flame Secondary Flame
Thickness Height
RDX 80 um 610K 100 um 1.5 mm
HMX 40 um 660K 140 um 2.2 mm

TRANSIENT ABSORPTION Measurements have been made on OH, NO,, NO and CN. The line of sight
nature of the absorption measurements are deconvolved using measured PUF profile shapes. The peak
concentrations found using this method in HMX self deflagration were: 0.083 mole fraction for NOo, 0.13
mole fraction for NO, and 340 ppm for CN.

DIFFUSION FLAME STRUCTURE Controlled geometry sandwiches of solid oxidizers and fuel were used
to study composite propellant diffusion flame structure using 2D PLIF imaging. The sandwiches were
manually fabricated and the minimum oxidizer and binder thickness studied so far were 250 um and 200
um respectively. PUF measurements on a propellant that had no diffusion flame showed NOo plumes
coming from the oxidizer but no diffusion flame between the oxidizer and the fuel plumes. A different
combination clearly showed a diffusion flame between the oxidizer and binder plumes. These flames, as
evidenced by CN radicals, had kinetically limited delay standoff distances associated with them and
appeared downstream within the diffusional mixing fans.
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SUMMARY We have used advanced laser diagnostics to study the chemistry and structure of neat
energetic material, composite solid propellant, and controlled geometry sandwich flames. Spatially and
temporally resolved concentration profiles have been obtained for NOp, NO, CN, CH, OH, HoCO, CH, and
Co; all in two dimensions. Spatial resolution to 50 microns was demonstrated. Pressures to 4 atm were
studied. Concentration profiles were calibrated using transient absorption. State resolved population
distributions were measured for OH and CN to provide 2D flame temperature profiles. Condensed phase
and near surface temperature profiles were measured using micro thermocouples. Direct images of
composite propellant diffusion flame structures were obtained.

Our results, along with those of Stufflebeam (UTRC), Edwards (AFAL), Vanderhoff (BRL), Lengelle
(ONERA, France), and other groups in the US, Netherdands, and Soviet Union, are beginning to lead to an
understanding of solid propellant combustion on a fundamental level and providing data for direction and
validation of modeling efforts.
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APPROACH

* SAMPLES

PRESSED PELLETS OF NEAT NITRAMINES
COMPOSITE PROPELLANTS
CONTROLLED GEOMETRY COMPOSITE SANDWICHES

* FLAME

CO2 LASER IGNITION

CO2 LASER SUPPORTED DEFLAGRATION
SELF DEFLAGRATION

1-4 ATM

* DIAGNOSTICS

PLANAR LASER INDUCED FLUORESCENCE (PLIF)
2D SPECIES PROFILES

2D TEMPERATURE PROFILES

TRANSIENT UV/VIS ABSORPTION

ABSOLUTE CALIBRATION OF
CONCENTRATION
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. SUMMARY

°* STUDIED NEAT NITRAMINES, COMPOSITE,
SANDWICHES

* SPATIALLY AND TEMPORALLY RESOLVED
CONCENTRATION PROFILES -
NO2 NO CN NH OH H2CO CH Cp  ALL 2D

* STATE RESOLVED POPULATION DISTRIBUTIONS
OH NO CN T; PROFILES inc 2D

* 50 yum RESOLUTION (COULD BE < 20 ym)
e DEMONSTRATED TQ 4 atm (PLAN > 10 atm)

e CALIBRATED CONC. via UV/Vis ABSORPTION
NO2 NO CN OH

« CONDENSED PHASE AND NEAR SURFACE
TEMPERATURE PROFILES

» CONTROLLED HEATING FLUX FOR TRANSIENT
COMBUSTION, IGNITION, OSCILLATORY COMBUS-
TION with TEMPORALLY RESOLVED DIAGNOSTICS

. PROPELLANT DIFFUSION FLAME STRUCTURE
DIRECTLY IMAGED

Our results along with Stufflebeam (UTRC), Edwards (AFAL), Vanderhoff (BRL), and other
. research groups In the US, France, Netherlands, and Soviet Union are beginning to lead

to an understanding of solld propellant combustion on a fundamental level and providing
data for direction and validation of modeling efforts.
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KINETICALLY LIMITED LEADING EDGE of
DIFFUSION FLAMES
(KLLEFs)

Prof. ED PRICE
Georgia Institute of Technology

(Presented by Tim Parr, NWC)

* INTRODUCTION

* METHANE/AIR DIFFUSION FLAME
EXPERIMENTS

° METHANE/AIR DIFFUSION FLAME MODELING

* COMPOSITE PROPELLANT RESPONSE
PREDICTIONS AND EXPERIMENTAL
VALIDATION
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Abstract

The decomposition mechanism of energetic materials have been studied theoretically
using detailed chemical kinetics models. The thermochemistry of the intermediate
molecular species as well as the reaction pathways are determined using

the BAC-MP4 quantum chemistry method. Examples are given for the ignition of
nitromethane and the cyclic nitramine, RDX. Differences between the cyclic
nitramines and caged nitramines due to hydrogen content of the energetic material are
discussed. Formalisms have been developed for treating non-idealities of high
pressure and condensed phase solvation. Results for water-catalyzed reactions are
presented.

Introduction

The decomposition of energetic materials represents a hostile environment of high
temperatures and pressures and short time scales. While it is difficult to
experimentally study the molecular processes of decomposition under these
conditions, these processes are computationally accessible to theoretical chemistry
and detailed chemical kinetics modeling. The ability to model energetic materials
requires a knowledge of the thermochemical properties of the initial energetic
compound as well as those of the intermediates formed during the decomposition
process. From the thermochemical properties, one can determine the bond
dissociation energies of a molecular species and its subsequent intermediates. One
can also determine reaction pathways and the activation energies involved in going
from reactants to products. In this paper, we use the BAC-MP4 (Bond-Additivity-
Corrected Mgpller-Plesset 4th order perturbation theory) quantum chemical procedure!
to investigate dissociation energies of various energetic molecules and decomposition
pathways for various energetic materials, including nitromethane and nitramines?2.
Finally, we present a formalism for treating non-ideal gas effects in the detailed
kinetics modeling.3

Bond Energies of Nitro Groups

In Table I, we present the bond dissociation energies for selected nitro compounds
involving C-NO; and N-NO; compounds. We find that the R2N-NO; compounds
(nitramines) have weaker bond strengths than the R3C-NO2 compounds. Also,
nitramine (NHyNO37), methyl nitramine (CH3NHNO»), and dimethylnitramine
((CH3)2NNO37) have similar N-NO2 bond dissociation energies (~ 47-51 kcal-mol-1),

*This work supported by the Office of Naval Research under contract N0O0014-90-F-
0078.
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even when strain energy is introduced, such as in N-nitro azetidine. This indicates
that group-additivity concepts can be applied to estimating heats of formation of larger
nitramine compounds.

On the other hand, neighboring groups can affect the bond dissociation energy for the
C-nitro class. Replacing a hydrogen atom of nitromethane by a methyl or amino group
has little effect on the BDE. Replacing the hydrogens by an imino (C=N) double bond
also has little effect on the BDE. Thus, it is surprising to find that oxynitrotriazole,
which has a neighboring amino and imino bond has increased its nitro bond energy by
~13 kcal-mol-!. This is comparable to the increase in the C-NO; bond energy due to
a neighboring C=C double bond.

Table 1. Calculated bond dissociation energies for various nitro compounds. BDE's
are determined from BAC-MP4 heats of formation at 298 K. (Energies in kcal-mol-1.)

CH;3--NO3 58.9 NH,--NO, 51.4
CyHs--NO, 60.8 CH3NH--NO; 50.6
NH,CH»,--NO; 59.2 (CH3)2N--NO3 47.2
HN=CH--NO, 59.8 CNNO;, 50.6
CH,=CH--NO, 70.2
Oxynitrotriazole 71.8

Nitromethane Ignition

The detailed chemical kinetics modeling approach is used to study the chemistry of
nitromethane ignition and detonation?. The chemical reaction mechanism included 35
species and 150 elementary reactions. In Fig. 1, we present the temperature,
pressure, and species profiles as a function of time for the ignition of CH3NO> at 6.85
atmospheres and 1202 K, representative of the experimental conditions in Ref. 4. We
see from the figure that the overall reaction chemistry of the first stage ignition is
primarily

2 CH3NO72 — CH30H + CH;0 + 2 NO, AHRxn = +1.9 (R1)
with the later conversion of formaldehyde to carbon monoxide
CH20 — CO + H». AHrxn =-0.5 (R2)

The reactions are essentially thermoneutral, yielding very little temperature rise.
The increase in pressure arises from the conversion of one mole of nitromethane into
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two moles of intermediates. The overall reaction, which reduces the free energy, is
driven by the increase in entropy of phase space resulting from the increase in the
number of molecules formed. The majority of heat release in nitromethane occurs in
the second stage ignition which converts NO to Na. A reaction flow diagram for the
first stage ignition is given in Fig. 2. In nitromethane, the conversion of CH30 to
CH30H and CH;O provides the source of heat for the short (microsecond) first
ignition stage, after which CH30H is converted back to CH20 and then to CO during
the first stage ignition. We find the same role of CH30H occurring in methyl nitrate
ignition. In Fig. 3 we present the temperature, pressure, and species concentration
profiles as a function of time for nitromethane following shock detonation. The time
is plotted on a logarithmic scale in order to see both the first and second stages of
ignition. The main difference in the chemistry from that in the low pressure, constant
volume ignition is that more of the CH20 is converted to CO and H3 under detonation
conditions. It is important to note that in the detonation process, the time scale for
the chemical reactions to occur for the decomposition and first stage of ignition is
hundreds of picoseconds.

4000 T0 '
Ignition of Nitromethane L I
60 Ignition of Nitromethane
1202 K, 6.85 Atm “ 1202 K, 6.85 Atm
3000 1
L 50 !
[ 1 E L1 F
% " 2 1CHaNO2
3 2000 ¢ (11
E L 30 @
B
g
- L 20 A
1000 4
- v
10
("
¥ = i 3 it i 3 - . -l -l -l
7 - -5 4 3 -2
106 TMEED
Log Time (sec)

Fig. 1. Temperature and major species concentration (mole fraction) profiles as a
function of time for the ignition of nitromethane in a shock tube. Starting conditions
were 1202 K and 6.85 atm.
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Decomposition Reaction Mechanism foi
the First Stage Ignition of CHNO,

Carbon
CHgNO,

+M
+ HNO
+ CH0

—— CH, — CH,
+NG, ‘+No_,_

CH,ONO

Jm

+ HNO
—> CH,0 —* CHZOH

J +NO Noau + CH,0

CH,0 CH,OH
+ OH
‘ + CHs3
+ CH,OH
HCO

‘-&NO

CcoO

Nitrogen

CH,NO,
+M

+ CH;0H
—— NO, —— HONO

+ CH3 J+CH3

CH;ONO M

Jm

CHO
— NO =—*> HNO

+ CHaO
+ HCO

Fig. 2. Reaction mechanism diagrams for the carbon-containing and nitrogen-
containing species during the ignition of nitromethane. Starting conditions are 1202 K
and 6.85 atm. Unimolecular decomposition is indicated by the third-body notation +M.

Thick arrows indicate major reaction pathways.
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Detonation of Nitromethane, 300 K, 500 Atm Detonation of Nitromethane, 300 K, 500 Atm

.0 as

1 Species Profiles

Preseure (Atn)

2 ¢ u 4
Log Time (Sec)

Fig. 3. Temperature and major species concentration (mole fraction) profiles as a
function of time for the detonation of nitromethane. Starting conditions were 300 K
and 500 atm.

RDX Flame

We have solved the one-dimensional flame problem, including mass and species
diffusion as well as detailed kinetics modeling, to study the reaction chemistry of an
RDX flame.2:5 The resulting temperature and species profiles as a function of
distance above the gas/solid surface of the steady-state RDX flame at 1 atm are
given in Fig. 4. In Fig. S, we present the chemical reaction flow diagrams for the
RDX flame. The results indicate two-stage flame chemistry. The OH radical
dominates the primary zone chemistry. The thermal decomposition of HONO
provides the source of OH radicals in the primary flame. HONO plays an analogous
role to CH3OH in nitromethane by providing a temporary source of heat for the first
stage ignition. The HONO is formed from NO; by reactions with weakly bound
hydrogenated species, such as HoCN, CH20, and HCO. Since the C-H bond in
HCN is very strong, the majority of HCN remains until the second oxidation stage
zone. The N2O formed during the initial decomposition stage also remains relatively
inert until the high temperature second oxidation stage.

116



07/25/91
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Fig. 4. Temperature and species concentration (mole fraction) profiles as a function
of distance (mm) for the RDX flame at 1 atm. Origin corresponds to the gas-solid
interface.
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Primary Flame Zone of an RDX Flame
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Fig. 5. Chemical reaction flow diagrams for the (a) primary and (b) secondary stages
(or zones) in the RDX flame at 17 atm. The spatial extent of the zones is indicated
by the distances given in pm. We have separately indicated the reaction chemistry of
the carbon species, the nitrogen species of the amino group of the RDX ring, and the
nitrogen chemistry of nitro group of RDX. A similar reaction flow diagram exists for
other flame pressures except that the distances must be scaled. Thick arrows
indicate major pathways, while thin arrows indicate minor pathways.
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HCN / NO; Flame

To understand the difference in chemistry between cyclic nitramines and caged
nitramines, we have developed a detailed chemical kinetics model of the HCN/NO,
flame.® In collaboration with M. C. Lin, we have been combining experiments with
BAC-MP4 calculations and detailed chemical kinetics modeling to develop improved
chemical reaction mechanisms.? Unlike RDX, the hydrogen content for this system is
half as much, i.e., CiHjN20, vs. CjHaN20,. Several changes were made in the
chemical reaction mechanism, including the new species NCN. Based on BAC-MP4
calculations, we have included possible reaction steps involving the NCN radical
within the overall reaction mechanism. The resulting chemical reaction flow diagram is
shown in Fig. 6.

Comparing the HCN / NO, flame with the RDX flame, we find that the reaction
mechanisms in the HCN / NO; flame resemble primarily the secondary flame
chemistry of RDX. This is not surprising, since the primary flame chemistry of RDX
involves the formation and decomposition of HONO. For the HCN / NO7 flame, there
is only one hydrogen atom per NO; group (as typical for the caged nitramines), while
RDX and HMX have two hydrogen atoms per NO; group. The extra hydrogen in the
case of RDX and HMX is readily extracted by the NO7 to form HONO. The
decomposition of the HONO to form OH radicals generates the radical pool
responsible for the first stage flame chemistry. On the other hand, the hydrogen in
HCN is strongly bound, so HONO cannot be readily formed. The hydrogen is not
available until after oxygen atoms are produced. Thus, we expect the combustion
chemistry of caged nitramines to be similar to that of HCN / NO; flames but
significantly different from that of the cyclic nitramines, RDX and HMX.

Real-Gas Effects on Chemical Thermodynamics and Reaction Mechanisms

The stability of decomposition intermediates as well as the reaction mechanisms will
be affected by the real-gas behavior of high pressures and condensed phases. We
have recently developed a procedure using equations of state whose critical properties
could be obtained theoretically from the BAC-MP4 method.3 The procedure uses
transition state theory to treat transition state structures as additional species whose
thermodynamic properties can be determined using the same equations of state. The
relationship between the real gas partial molar Gibbs energy W;, the pure species ideal

gas Gibbs energy u‘i’ (equal to the standard Gibbs energy of formation AG‘r’ 208

computed by the BAC-MP4 method), and the partial molar departure functions u?
(computed from the equation of state) is given by:

i =p?+RT1n(P/P°)+p?+RT1nxi=G;+RT1nxi, (7)

where xj is the mole fraction of species i and G; is an effective Gibbs energy for a
species in the high-density environment.
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Parameters for the critical volumes and critical temperatures of transition state
structures and other molecules are obtained from scaling relations based on the atomic

charges within the molecule. The resulting heats of formation, AH‘; 29g» and free
0

£ 298’ for the OH + Hz — H20 + H reaction are given in Table II and Fig.

7. The results indicate that the transition state is intermediate in polarity between
reactants and products. We have developed a solvation model based on the
boundary-clement method® to obtain solvation energies and volume parameters.
Preliminary results for the H + HN3 — Hj + N3 are given in Table III. The results
indicate a trade-off between the solvation effect, which assists the reaction, and the
volume effect, which hinders the reaction at high pressure..

energies, AG

Table II. Changes in chemical potential for the reaction H + H0 = Hj; + OH,
relative to reactants (energies in kcal-mol-1) for two different temperature and
pressure regimes.

298 K, 1 Atm. 700 K, 300 Atm.

Ap® ApD AG* AV Ap°o  AplG ApD  AG* AV
TS 23.0 -42 189 -6 31.6 237 -0.7 23.0 -366
Products 149 3.3 18.1 +12 143 143 0.5 147 +108

Fig.7. Geometries and atomic charges for the reaction H + H0O = Hjz + OH,

Table ITII. Condensed Phase Effects on H + HN3 — H2 + N3. Volumes, surface

areas, and free energies of cavitation and electrostatic solvation are given for the
reactants, transition state, and products.

Species: H HN3 TS H2 N3

Volume (A3): 7.0 47.8 67.9 10.7 44.1
0.0 +13.1 -0.0

Area (A2): 17.7 59.6 68.2 s Aoy 56.8
0.0 9.1 +2.6
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Free Energy (Kcal-mol-1):

Cavitation 19 6.4 74 25 6.1
0.0 -1.0 +0.3

Electrostatic 0.0 -4.5 -3.6 0.0 -2.1
0.0 +0.9 +2.5

Water-assisted Reactions

During the initial stages of decomposition in the condensed phase, the formation of
water can autocatalyze the decomposition process through hydration and hydrolysis.
For example, the transition state structures for the breaking of the C-N bond is
indicated in Fig. 8. The concerted proton transfer among several water molecules
along with the increased ionic character of the transition states significantly lowers
the activation energies of the reaction.?

HANCHO + 3 H20 —» CHNH2OH)2 + 2 H20 —
CHNHz(OHR + 2 H20 HCOOH + NH3 + 2 H0

Fig. 8. Transition state structures and atomic charges for the hydrolysis of formamide
to formic acid, corresponding to the breaking of the C-N bond. The additional water
molecules autocatalyze the reaction. The increased ionic charges on the hydrogen
atoms undergoing proton transfer enhance the solvation energy, thereby lowering the
activation energy of reaction.

Conclusions

The BAC-MP4 quantum chemistry method and detailed kinetics modeling has been
used to investigate the decomposition mechanism of energetic materials at the
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molecular level. Thermochemical properties of intermediate species and transition
state structures are used to determine initial bond breaking in energetic molecules.
Chemical kinetics modeling using these results provide reaction pathways by which
decomposition and oxidation during ignition and deflagration occur. These results can
be used to understand the processes that will occur in new energetic materials under
development.
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Nitroethane Decomposition

Five-centered Elimination

CH,CH,NO, — CH,CH, + HONO AE = 41 kcal-mol’

k=10""e***"" near T =600K

T _— w——— Theor
1 N ————
Q
&

o \
g \\

4 y

5

11 12 1.3 1.4 15 1.6 1.7 1.8 1.9
1000 / T (K)

At higher T, C-N bond scission occurs

CH,CH,NO, — CH_CH, + NO,  AE = 58 kcal-mol '

(Theoretical rate constant k and activation energies AE
are based on B/lAZC/‘-MPAl method)
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RDX Solid/Gas Interface

Flame Pressure: 1 Atm 20 Atm
Surféce Temperature: 549K 634K
Mass Transport (gm/cm2/sec):
Rate of Evaporation: 7.582 120.06
Rate of Condensation: 7.550 119.55
Burn Rate: 0.032 0.51
Fraction of Solid Reacted: 0.047 0.073

Heat Transport (108 erg/cm2/sec):

Ag (dT/dx)+: 2.58 45.2

As (dT/dx)-: 1.42 30.0

p V AHvap: 0.19 -2.4

X pi Vi hj: 0.96 17.6
where

ArDX = 2.918 104 erg/cm/K/sec

AHyap = 133.9 1010 erg/mol
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RDX/HMX Solid/Gas Interface

Flame: RDX "HMX"
Flame Pressure: 20 Atm 20 Atm
Surface Temperature: 634K 703K

Mass Transport (gm/cm?2/sec):
Rate of Evaporation: 118.06 47.01
Rate of Condensation: 117.56 45.86
Burn Rate: 0.50 1.15
Fraction of Solid Reacted: 0.085 0.568

Heat Transport (108 erg/cm2/sec):

Ag (dT/dx)+: 43.3 39.4

As (dT/dx)-: 29.0 56.6

p vV AHyap: -2.4 -38.6

¥ pi Vi hi: 16.7 21.4
where

ARDX = 2.918 104 erg/cm/K/sec

AHvap = 133.9 1010 erg/mol
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Fuel Nitrogen Chemistry

NCO NCNO HNCO
+NO,
j l+H
NH ---.-—’i NH,
+H +M +OH
+M, +OH HNO
l+CN 1+H ¢+M
+NO

N, —<+—— N NO
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Water Catalyzed Decomposition
of Ringed Nitramines RDX & HMX
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June, 1991

Structure Analyses of Energetic and Strained Organic Compounds

by Richard Gilardi,
Laboratory for the Structure of Matter [Code 6030]
Naval Research Laboratory,
Washington, D.C. 20375 U.S.A.

At the beginning of the 1980s, the U. S. Office of Naval Research
[ONR] identified a strong need for the production of new 'high. energy
density materials' , an emerging area of research. Better materials in
this area would enable improvements in performance coupled with
increcased safety in the next generation of naval ordnance. To meet

‘ these requirements, a number of research initiatives were spawned
which focussed on the synthetic chemists who synthesize new
energetic materials, but also engaged the expertise of researchers from
many scientific disciplines, from rocket engineering to quantum
chemistry.

The sudden production of hundreds of new energetic compounds
(and precursors to energetic compounds) by this ONR program
provided an opportunity for NRL's Laboratory for the Structure of
Matter (LSM) to demonstrate the utility of rapid structural analysis to
a synthesis program . X-ray diffraction analysis can often provide the
detailed structure of a new material from a single crystal, even when
the structural and empirical formula are not completely known. This
technique is thus particularly valuable for primary identification when

. a new energetic material is very scarce. In recent years, small
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quantities of many new crowded and highly strained molecules have
been synthesized in academic, industrial & government labs in ONR
programs. The structures of over 300 of these new molecules were
identified or corroborated with X-rays at NRL.

The question of detonability of materials at the molecular level
depends on many factors other than ground-state molecular structure;
some of these factors are unfamiliar to me, and that is a prime reason
for my attendance at this workshop. On the other hand, the molecular
structure and the crystal packing of a material are essential to any
specific study. One question which is often asked of me is: can you see
features in the structure which indicate strain, and does this strain
lead to weak bonds, which in turn might lead to increased sensitivity?
The answer to this question is not at all simple. Some of the more
strained compounds will be briefly discussed.

Strained Molecules

A molecule, by definition, is strained when its bond distances,
angles and torsions must deviate from the "normal”, or lowest-energy
values to achieve the final determined connectivity and structure.
Bond angles usually show the largest distortions. In some of the
compounds studied at NRL, angles are distorted by up to 30° from
normal tetrahedral and trigonal values. Severely twisted olefins,
several cubane derivatives, and new cubyl-cubanes will be among
those discussed. The cubyl-cubanes [Gilardi, Maggini & Eaton, J. Am.
Chem. Soc. 110, 7232-4 (1988)] are made up of two cubane cages
linked by a C-C bond, and probably contain more overall strain energy

than any other compounds yet made, yet they appear to be stable
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indefinitely at room temperature. It was once thought that
non-symmetrical cubanes would be unstable, but now a number of
unsymmetrical derivatives have been made which appear to be as
stable as cubane itself.
Nitramine Structure Analyses

Over 80 of the new materials submitted to NRL/LSM for analysis
and subsequent archiving in the LSM energetic database are
nitramines; when such a large number of related structures have been
studied, basic structural parameters, such as preferred bond distances
and angles for chemical groupings, can be derived through statistical
analysis. In addition, subtler structural features may be ascertained.
For example, examination of the structures of the nitramine groups in
the Cambridge and NRL/LSM databases shows that the amino nitrogen
atoms in nitramines are quite flexible; i. e., in some molecules, the
three bonds to the amino nitrogen atom are coplanar, while in others
they are decidedly nonplanar, and the N atom is best described as
'pyramidal’.  The distribution of the out-of-plane bending angles for
the amino group is illustrated in one of the Figures. The histogram for
the amino bend ranges from 0 to 60° though dominated by small
[0-20°] angles of bending, they range up to one cxample observed to
be 59°. The nitrogen atom in the nitro group of the nitramine is much
less flexible and seldom departs from a planar conformation by more
than a few degrees, as may also be seen in the same Fig. In the
flexible amino portion of the nitramine, it is also of interest to note
that a correlation exists between the C-N-C angle and the amino bend

This means that nitramines which are part of small rings, and thus

Lo Gilardi, 591
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adopt a small CNC bond angle, will have a tendency to be pyramidal at
the amino nitrogen atom. An example of such a structure is
1,3,3-trinitroazetidine (see Fig.), a dense strained nitramine wherein
the N1-N5 bond makes a 39.7° angle with the C2-N1-C4 plane.

After (and partly as a result of) the NRL study of nitramine
structures, an extensive quantum-mechanical analysis of a simple
nitramine, dimethylnitramine, was carried out at the Univ. of Texas
[F. R. Cordell; "Ab initio Study of Dimethylnitramine”, 1987 Report,
Univ. Texas, Austin, TX. Gov. Rep. Announce. Index (U.S.) 87, Abstr.
No. 750,665. NTIS order No. AD-A183414, 112 p.]. This calculation
indicated that a dimethylnitramine model containing a planar amino
nitrogen has the lowest energy, but that only 400 calories/mole were
needed to bend the amino-nitro bond 40° out of the plane. This is a
very small amount, comparable to the thermal energy of any molecule
at room temperature. Thus, the X-ray structural analyses and the
quantum chemical analysis both indicate that weak forces can produce
large changes in the amino bend since the energies are not much
different for the in-plane and the out-of-plane configurations. This
type of structural information is of great interest to the theoretical
chemists studying the electronic properties of energetic groups, and is
also helpful in the computer modeling of hypothetical energetic

materials.
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THERMOMECHANICAL INFLUENCES ON THE COMBUSTION OF RDX CRYSTALS
R.W. Armstrong*, A.L. Ramaswamy** and J.E. Field*~*

*Office of Naval Research European Office
223/231 0ld Marylebone Road
London NW1l 5TH, U.K.

**University of Cambridge
Cavendish Laboratory
Cambridge CB3 OHE

SUMMARY/OVERVIEW

Preliminary experiments have been performed at the Cavendish
Laboratory, University of Cambridge, using a grazing laser beam
to melt and ignite local surface regions of nearly perfect
cyclotrimethylenetrinitramine (RDX) crystals provided by John
Sherwood and David Sheen of the Department of Pure and Applied
Chemistry, University of Strathclyde. The purpose is to
investigate whether the type of mechanical stress influences that
occur for the impact sensitivities and shock-induced detonation
of energetic crystals also produce relevant influences on their
combustion properties, particularly, when incorporated as
ingredients in nitramine composite propellants. Properties of
interest for such thermomechanical influences are, for example,
burning rates and their pressure dependent exponents.

INTRODUCTION

A comprehensive review of previous combustion studies and, also,
the obtainment of new results were reported by Blomshield (1) of
the Naval Weapons Center, particularly involving propellants
containing cyclotetramethylenetetranitramine (HMX) crystals. The
total results have indicated that crystal size dependent
shattering may occur in propellants under relatively high burning
rate/pressure conditions. Larger crystals were indicated to
shatter more easily.

Both the monoclinic beta polymorph P2;/n of HMX and the
orthorhombic Pbca structure of RDX have an unusual combination
of mechanical properties in that they are relatively hard,
elastically-compliant, and brittle (2). Such mechanical
characteristics coupled with the low thermal conductivities of
these crystals provide an added incentive for investigating the
nature of any cracking behavior that might be associated with
their combustion properties. A further interesting feature is
that combustion of HMX and RDX occurs after a melt layer forms on
the crystal surfaces. This should facilitate the occurrence of
cracking below the liquid because a lower liquid/solid
interfacial energy is then required for the formation of crack
surfaces rather than the larger surface energy of solid/vapor
interfaces.
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Experimental results reported here were obtained on RDX crystals
that were made available from the University of Strathclyde.
Considerable information on the dislocation properties of such
crystals has been obtained at Strathclyde (3). Related results
have been reported for similar crystals that were produced at the
Los Alamos Laboratory and tested at the Naval Surface Warfare
Center, White Oak Laboratory (4). For example, the easy
occurrence of cleavage cracking across (001) surfaces has been
confirmed for the orthorhombic crystal structure of RDX (2,4).

PRELIMINARY RESULTS

The light from a neodymium glass laser capable of delivering 10 J
in a 300 ns pulse was put through a 50 micrometer diameter fiber
optic guide inclined at a glancing angle of approximately 10
degrees onto local regions of essentially specular growth faces
of individual RDX crystals of approximately 5 mm size. Energies
in the range of 0.1 to 1.0 J are estimated to have been
delivered to the crystals. Only post-irradiation observations
have been made thus far of obvious melt (and combustion) zones
that have occurred at generally smaller regions in the irradiated
crystal surface areas. The cause for localized melting is
attributable, presumably, to the nonuniform distribution of
energy in the incident laser beam and to the possibility of
certain defect-containing regions being more prone to melting.

Figure 1 is a transmission optical micrograph of an irradiated
region centered on a (210) RDX crystal growth surface. The
Figure shows several lateral (001) cleavage cracks within an
elliptical melt zone also containing a central lens-shaped burn
spot of semi-transparent brownish residue. Behrens has given a
physical description of a brownish residue in his studies of the
controlled combustion of RDX and identification of gaseous
products (5). The smallest (00l1) crack spacing in Figure 1 is
approximately 3 micrometers.

Figure 2 shows another example of fine scale lateral (001)
cracking in a melt zone formed adjacent to a larger prominent
(001) crack emanating from the long axis of a Knoop microhardness
indentation put into the (210) crystal surface prior to
irradiation with the laser beam. The fine scale (00l1) cracks are
approximately 1 micrometer deep. The two relatively large
vertical cracks, inclined to varying degrees to the (210)
surface, are indicated to have segments of (100) and (010) crack
lengths as well as other crystallographic segments.

DISCUSSION

A main point of interest --- whether the cracking at melted and
burned spots has occurred during heating or while at the
combustion temperature as compared with occurring on cooling
after the laser irradiation --- is not yet known and further
experiments are in progress to resolve the issue. If the cracks
are formed on heating or at the burn temperature, then they
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provide a ready explanation for the observation of crystal
shattering at high burn rates, also leading to an increase in the
burn rate/pressure exponent. Sufficient pressure build-up over
the microcracks would drive them through the crystal. Crack
formation caused by thermal stresses on cooling, though a normal
expectation, would have to relate in a more complicated thermal
cycling mechanism to crystal shattering occurring at increasing
burn rates. For this reason, various thermomechanical models are
being investigated for the possibility of explaining the
occurrence of cracking at constrained zones on a crystal surface
subjected to localized heating, especially, for a hard,
elastically-compliant, and yet brittle crystal with a low thermal
conductivity.

A first consideration is that circumferential tensile stresses
are produced in the constraining matrix when resisting the
expansion of a heated zone. Hahn and Armstrong have described
the inverted situation for a low thermal expansivity inclusion
resisting the contraction of a matrix material that has
plastically yielded (6). Atkinson has obtained this result for
the elastic expansion from a point heat source (7). Cracking has
been observed in unmelted zones around inclusions in RDX.

A second interesting consideration involves the outward bulge-
type expansion of a free surface region when locally heated. If
a sufficient "bend strain" is introduced into the surface layer,
then wedge-type cracks will penetrate to a certain small depth.
The cracks will be stable in the sense of being prevented from
propagating into the compressive stress state of the deeper
surface layer. Such cracking would be promoted underneath a
liquid layer and, also (8), would be promoted by the dislocation
flow needed to satisfy this strain condition. Such cracking
might be expected for a material with the kind of properties
exhibited by RDX or HMX.
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Figure 1. Combustion residue and microcracking at an RDX (210)
crystal surface burn spot after laser irradiation.
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Figure 2. Extensive cracking within a melt zone occurring in the
strain field of a Knoop microhardness indentation.
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Dislocation micromechonics approach to investigating
nitramine - fillkd propellant combustion
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Dislocation micromechanics approach to 'mvest;sgoﬁn

nitramine - filled propellant combustion
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Combustion residue and microcracking at an RDX (210)
crystal surface burn spot after laser irradiatinn.
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Extensive cracking within a melt zone occurring in the
strain field of a Knoop mgggohardness indentation.



